C Applications Debugging

Adrien Kunysz

August 4, 2012

Outline

Introduction

Application memory

C programming language

Assembly

Workshop

Outline

Introduction

What we will cover

v

userland only

v

understanding how a process works
C and x86 assembly basics

> pointers!
gdb essentials

» what to do with a core
» understanding backtraces
» disassembling functions

v

v

What we will not cover

» kernel stuff (vmcore, crash,...)
» swapping and how virtual memory works

» multithreading

» dynamic debugging (valgrind, SystemTap,. ..

» malloc debuggers (valgrind, ElectricFence,. ..

» ELF, dynamic loader,...
» system calls internals
» PAE and other 32 bits specific hacks

Outline

Application memory

Disclaimer

v

everything in this section is wrong

v

or at least greatly simplified

v

but it's fine as long as you don't try to debug kernel issues
> pay no attention to the man behind the curtain (for now)

Basic facts about memory

this is about 32 bits x86 but similar for other archs
this is about a single threaded userland process

v

v

» memory is just a 232 bytes (4G), 1 dimension array

v

splitted into pages

What's a page?

» 212 bytes (4K), 1 dimension array
» access rights for each page: read, write, execute

» can be mapped (backed up by actual memory) or not
» you have to ask kernel to map pages for you
» mmap(), brk(), sbrk()

» usually done within malloc (), calloc(), reallocQ),...

Virtual Pages Physical Pages

page O
(not mapped)

ox100¢

0x1000

age 1
rw- (mapped, read-write)

0x200¢

1 ox2000
page 2

r-x (mapped, read-execute)

0x3001

oxfffffoo oarr i
page 1048575
--- (mapped but no access)

oxfAFFFE]

What's a segmentation fault?

A segmentation fault is a signal SIGSEGV sent by kernel to a
process doing something wrong.

> accessing unmapped page

» wrong access rights (writting to read-only page,...)

This will write a full copy of the process memory to a file (core).

What's a pointer?

A pointer is a 32 bits value which is an address pointing to the N
cell of our memory array.
> typically pointing to the beginning of a specific data structure
» special "invalid pointer” value: NULL
» pointer fun with Binky!

This is document 104 in the Stanford CS Education Library. Please
see http://cslibrary.stanford.edu/ for this and other free ed-
ucational materials. Copyright NICK PARLANTE 1999.

http://cslibrary.stanford.edu/

Dangling pointers

» pointing to unmapped page — segfault
> pointing to mapped page but wrong data — madness
and probably segfault a few thousands instructions later

» the segfault only happens when trying to access the
unmapped page

1
o~
S

oxfff120

ox300¢
H \ |
H |

oxf oo

v
0x00000000

OxfFFFEF1]

What's a stack?

» push data on the top
> pop them back from the top in reverse order

> let you store things you will need to resume a task you

interrupted
-~

quL quL
baz baz baz baz
bar bar bar bar
foo foo foo foo

push pop

How is the stack used?

» you push a context that you will restore later
» one stack per thread
» some part of the memory is used for that stack

» stack grows too large — overwrites random data, access
unmapped memory

» need to keep reference to the top of the stack: stack pointer
(ESP on x86)

1 int foo(int x) {

2 int y;
3 int z;
TODO: stack graphic here * [xo %/
5 z =2z + bar(x +vy);
7 return z

Outline

C programming language

C programming language crash course

This presentation will not make you a C ninja in one hour.

This presentation will not cover:
» how to write C code
» how to fix existing C code

» advanced C tricks

After this presentation, you should have some idea of:

» how C works

» how to read basic C code
» how to find the area where a problem is located
» where to look to figure out the more advanced stuff

What is C?

v

» full control of your

low level programming language
232 bytes memory array

» good for system programming (kernel,...)

» not so good for application programming
very easy to make stupid, hard to find mistakes

not much fancy features

> old legacy that is not going to die any time soon

"everything” is written in C at some level
> that includes your Python interpreter
there are a few different C dialects
K&R the original one, mostly unused nowadays
ANSI first standardization, the most common

C99 latest standard, some nice new features but not
used a lot

C syntax: basics

» functions
» control structures: if, else, while,..
» comparison operators: ==, !=, <, > <=, >=

> assignation operator: =

0 int square(int x)

11 {

. I 12 int y;
' Int.n_l' 13 if (x =0) {
2 while (n < 10) y = 0
14 =)
> A 15 } else {
4 n = square(n); . Y = xax:
% " ! |
18 return vy,

o}

C syntax: pointers

int n; // declaring integer S e

2 int xfoo; // declaring pointer ;
3 // to integer qQ

0x2000 a2

s foo = &n; // making foo point to n
¢ xfoo = 42; // like n = 42

oxffffffifl

foo = 0x2000
*foo = 42
&foo = 0x1000

© ® N o o b~ W N R

C syntax: struct

» customized data types

> let you define complex aggregate of data

struct foo_t {
char c;
int n;
b
struct foo_t foo;
struct foo_t xp;
struct foo_t xp2;

foo.n = 1337;

p = &foo;

p—>c = 'X'; // (xp).c = X'
p2—>n = 42; // segfault (maybe)

char member "c
(ASCII "X" character)

padding

(unused)

int member "n"
(1337 in little endian)

{

0x58

0x39

0x5

0x0

0x0

Dynamic memory management

» kernel provides low level API (system calls)
mmap map some pages
munmap unmap some pages
brk map some more page at the end of this area

v

libc provides higher level APl based on top of system calls
malloc give me some memory (any size)
free you can get this memory back
realloc resize this piece of memory
applications usually use libc

» system calls are slower than library calls
> libc people are smarter than application developers

v

v

sizeof
» C operator
» evaluated at compile time
> gives size of its argument
> usually used to tell malloc how much memory we want

v

RTFM: man {malloc,mmap,brk}

Practical example: a linked list

1

10

11

12

struct list_t {

int x;
struct list_t xnext; // not recursive, this
// is just a 32 bits value

b
struct list_t x|l = malloc(sizeof(struct list_t));
[—>x = 42;
Il =—>next = malloc(sizeof(x11));
[l —>next—>next = NULL;
free(Il1);

free (Il —next); // segfault (maybe)

42

A

0 (NULL)

Working with source RPM

» How to use a source RPM?

» rpm -ivh foobar.src.rpm
» rpmbuild -bp /usr/src/redhat/SPECS/foobar.spec
» cd /usr/src/redhat/BUILD/foobar/

» The /usr/src/redhat/ directory:
BUILD unpacked and patched sources (after -bp)
RPMS generated rpm files
SOURCES source and patch files
SPECS package metadata (spec files)
SRPMS generated src.rpm files

» RTFM: man rpmbuild

Reading C

v

trying to understand a large program all at once is useless

v

focus on what you need to understand

v

look for the error message and work from there

tools
» find, grep, vi,...

v

> available everywhere
> you already know how to use them
> cscope
> find all the callers of a given function
> jump to definition of a function or struct
> slow to startup on large sources but pretty convenient

Let's do it!

v

find an application error message

retrieve the source

v

v

look up the error

v

follow the code that triggered the error

v

a simple, practical example: rhbz497874

http://bugzilla.redhat.com/497874

RTFM

v

ISO/IEC 9899: the C99 standard (final draft freely available)
Single UNIX Specification: a superset of the POSIX API
Standard C: a readable reference

man $ANYFUNCTION

v

v

v

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://opengroup.org/onlinepubs/007908799/
http://www.mers.byu.edu/docs/standardC/index.html

Outline

Assembly

x86 Assembly Language crash course

v

(very) low level programming language
» human readable machine code

v

"nobody"” writes in assembly anymore
» very tedious (computer's job)
> the compiler is better at it than you

v

you only read it to figure out what went wrong when the your
debugger can't figure it out itself
> two main syntaxes in use

AT&T is used by the GNU assembler
NASM is for Netwide Assembler

Quick comparison

» This is C (from Samba’s inotify handler()):

if ((ioctl(in—>fd, FIONREAD, &bufsize) != 0) &&
(errno = EACCES)) {

Quick comparison

» This is C (from Samba’s inotify handler()):
if ((ioctl(in—>fd, FIONREAD, &bufsize) != 0) &&
(errno = EACCES)) {
> This is x86 assembly:
mov %eax,—0x28(%ebp)

lea —0x10(%ebp),%eax

mov %eax ,0x8(%esp)

movl $0x541b ,0x4(%esp)

mov —0x28(%ebp),%edx

mov 0x4(%edx),%eax

mov %eax ,(%esp)

call 0x7b35e8 <ioctl@plt>

test %eax,%eax

jne 0x9ecc74 <inotify_handler+4+164>
mov —0x10(%ebp),%edx

test %edx,%edx
jne 0x9ecc96 <inotify_handler+4198>

Quick comparison continued

This is x86 machine code (in one byte hex chunks for readability):

0x89 0x45 0xd8 0x8d 0x45 0xf0 0x89 0x44 0x24 0x08
0xc7 0x44 0x24 0x04 Ox1lb 0x54 0x00 0x00 0x8b 0x55
0xd8 0x8b 0x42 0x04 0x89 0x04 0x24 0xe8 0Oxcb 0x69
Oxdc Oxff 0x85 0xcO 0x75 0x4d 0x8b 0x55 0xf0 0x85
0xd2 0x75 0x68

x86 registers

» CPU can only directly access register
> each register contains a 32 bits value
> can be a value
» can be an memory address (pointer)
» different types of register:

» 8 general purpose registers

6 segment registers (CS, DS, SS, ES, FS, GS)
1 EFLAG register (various CPU status info)

1 instruction pointer (EIP)

v vy

x86 general purpose registers

» EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP
» used for about anything the compiler feels like
> except for
EBP base pointer: address of the current stack frame

ESP stack pointer: address of the top of the stack
TODO: stack picture here

x86 AT&T assembly syntax basics

Instruction

ﬁ//%
mov S0x7, $ebx

bands |

operands

mnemonic (operator)

> registers are prefixed with 7
> integer constants are prefixed with $

> everything else after the last operand is ignored (comment)

x86 AT&T assembly syntax memory addressing

» (%eax) is for dereferencing EAX (kind of like *eax in C)
> -4 (%ebp) means *(ebp-4)

0x0

X 0x42
- 4
0x42

Oxffffffff

» the index is in bytes (so, -4 is 32 bits earlier)
» more advanced dereferencing tricks you shouldn’t care too
much about:
» Yds:-42(%ecx, %edx,2) is kind of like
*(ds+(ecx+tedx*x2-42))

x86 AT&T syntaxe: operands size

> "vanilla" operators use the register size to determine the
operands length

» but you can use a different length by using specific suffixes:
b bytes
| long

TODO: this part is not complete

Outline

Workshop

NOT WRITTEN YET

	Introduction
	Application memory
	C programming language
	Assembly
	Workshop

